Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The importance of discriminating between environments supportive of supercell thunderstorms and those that are not supportive is widely recognized due to significant hazards associated with supercell storms. Previous research has led to forecast indices such as the energy helicity index and the supercell composite parameter to aid supercell forecasts. In this study three machine learning models are developed to identify environments supportive of supercells: a support vector machine, an artificial neural network, and an ensemble of gradient boosted trees. These models are trained and tested using a sample of over 1000 Rapid Update Cycle version 2 (RUC-2) model soundings from near-storm environments of both supercell and nonsupercell storms. Results show that all three machine learning models outperform classifications using either the energy helicity index or supercell composite parameter by a statistically significant margin. Using several model interpretability methods, it is concluded that generally speaking the relationships learned by the machine learning models are physically reasonable. These findings further illustrate the potential utility of machine learning–based forecast tools for severe storm forecasting. Significance Statement Supercell thunderstorms are a type of thunderstorm that are important to forecast because they produce more tornadoes, hail, and wind gusts compared to other types of thunderstorms. This study uses machine learning to create models that predict if a supercell thunderstorm or nonsupercell thunderstorm is favored for a given environment. These models outperform current methods of assessing if a storm that forms will be a supercell. Using these models as guidance forecasters can better understand and predict if atmospheric conditions are favorable for the development of supercell thunderstorms. Improving forecasts of supercell thunderstorms using machine learning methods like those used in this study has the potential to limit the economic and societal impacts of these storms.more » « less
-
null (Ed.)Abstract. This paper describes the data collected by the University of Nebraska-Lincoln (UNL) as part of the field deployments during the Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) flight campaign in July 2018.The UNL deployed two multirotor unmanned aerial systems (UASs) at multiple sites in the San Luis Valley (Colorado, USA) for data collection to support three science missions: convection initiation, boundary layer transition, and cold air drainage flow.We conducted 172 flights resulting in over 21 h of cumulative flight time.Our novel design for the sensor housing onboard the UAS was employed in these flights to meet the aspiration and shielding requirements of the temperature and humidity sensors and to separate them from the mixed turbulent airflow from the propellers.Data presented in this paper include timestamped temperature and humidity data collected from the sensors, along with the three-dimensional position and velocity of the UAS.Data are quality-controlled and time-synchronized using a zero-order-hold interpolation without additional post-processing.The full dataset is also made available for download at https://doi.org/10.5281/zenodo.4306086 (Islam et al., 2020).more » « less
-
null (Ed.)Unmanned aerial systems (UAS) can advance understanding of the atmosphere and improve weather prediction, but public perceptions of drone technologies need to be assessed to ensure successful societal integration. Our qualitative study examines public perceptions of UAS technology, and the associated risks and benefits, for such civilian purposes. We examine how people form perceptions, and discuss the implications of these perceptions for UAS design and regulation. Our study finds the public to be favorable toward UAS used for “noble” purposes. Participant views are informed by popular media, personal experiences, comparisons between technologies, and consideration of the trustworthiness of the users, regulators, and technology itself.more » « less
-
null (Ed.)Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500 m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5 m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions.more » « less
-
Unmanned aerial vehicles reveal the impact of a total solar eclipse on the atmospheric surface layerWe use unmanned aerial vehicles to interrogate the surface layer processes during a solar eclipse and gain a comprehensive look at the changes made to the atmospheric surface layer as a result of the rapid change of insolation. Measurements of the atmospheric surface layer structure made by the unmanned systems are connected to surface measurements to provide a holistic view of the impact of the eclipse on the near-surface behaviour, large-scale turbulent structures and small-scale turbulent dynamics. Different regimes of atmospheric surface layer behaviour were identified, with the most significant impact including the formation of a stable layer just after totality and evidence of Kelvin–Helmholtz waves appearing at the interface between this layer and the residual layer forming above it. The decrease in surface heating caused a commensurate decrease in buoyant turbulent production, which resulted in a rapid decay of the turbulence in the atmospheric surface layer both within the stable layer and in the mixed layer forming above it. Significant changes in the wind direction were imposed by the decrease in insolation, with evidence supporting the formation of a nocturnal jet, as well as backing of the wind vector within the stable layer.more » « less
-
Abstract On 28 May 2019, a tornadic supercell, observed as part of Targeted Observation by UAS and Radars of Supercells (TORUS) produced an EF-2 tornado near Tipton, Kansas. The supercell was observed to interact with multiple preexisting airmass boundaries. These boundaries and attendant air masses were examined using unoccupied aircraft system (UAS), mobile mesonets, radiosondes, and dual-Doppler analyses derived from TORUS mobile radars. The cool-side air mass of one of these boundaries was found to have higher equivalent potential temperature and backed winds relative to the warm-side air mass; features associated with mesoscale air masses with high theta-e (MAHTEs). It is hypothesized that these characteristics may have facilitated tornadogenesis. The two additional boundaries were produced by a nearby supercell and appeared to weaken the tornadic supercell. This work represents the first time that UAS have been used to examine the impact of preexisting airmass boundaries on a supercell, and it provides insights into the influence environmental heterogeneities can have on the evolution of a supercell.more » « less
-
ABSTRACT Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science.more » « less
-
Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.more » « less
An official website of the United States government
